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Epigenetics
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Genomics and epigenomics
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Challenges for epigenomic research

e Complex disease is influenced by multiple genes
— Disease loci scattered at [largely] unknown genomic positions

— Need an epigenetic assay that is:
e Accurate
e Affordable
e High-throughput
e Whole genome

e Assay of choice:

— Methylated DNA immunoprecipitation (MeDIP; Weber et al. [2005] NatGen)
— Decent balance between:

e Throughput

e Genomic coverage

e (Cost



MeDIP assay — how it works
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MeDIP assay — how it works
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AutoMeDIP

e Diagenode

— Automates up to 16 samples per run

e Up to 24 samples every 24 hours (5 hour IP)

— Hands on time saving = 75%

e Performance measured using:

— In vitro methylated spike

— gPCR




Spike-in made from A-DNA
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Results
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50% -+

40%

30%

recovery

20%

10%

0%

reproducibility

W Automated

m Manual

LLERkhl

N =16 all (N =33) biologically
independent

Dayl Day2 Day3 Day4 Day5 ey

Butcher & Beck (2010) Methods, Apr 10



Results — sensitivity
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Results — specificity
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Results — implications on alighment
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Bioinformatic challenges...

e Enrichment bias means absolute methylation levels
are difficult to quantitate

e Fortunately, help is at hand:

NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 7 JULY 2008

A Bayesian deconvolution strategy for
Immunoprecipitation-based DNA methylome analysis

Thomas A Down"®, Vardhman K Rakyan®®, Daniel J Turner’, Paul Flicek?, Heng Li*, Eugene Kulesha?,
Stefan Grif*, Nathan Johnson?, Javier Herrero?, Eleni M Tomazou?, Natalie P Thorne®, Liselotte Bickdahl®,
Marlis Herberth?, Kevin L Howe®, David K Jackson®, Marcos M Miretti®, John C Marioni®, Ewan Birney?,
Tim ] P Hubbard?, Richard Durbin3, Simon Tavaré® & Stephan Beck®

e Unfortunately...
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MeDIP and non-CG methylation

Vol 462/1% November 2009 |doi:10.1038/nature08514 nature
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Human DNA methylomes at base \ 4
resolution show widespread epigenomic s mc-ss.10
differences

Ryan Lister'*, Mattia Pelizzola'*, Robert H. Dowen!, R. David Hawkins®, Gary Hon?, Julian Tonti-Filippini*,
Joseph R. Nery’, Leonard Lee”, Zhen Ye*, Que-Minh Ngo*, Lee Edsall®, Jessica Antosiewicz-Bourget™®,
Ron Stewart™", Victor Ruotti™®, A. Harvey Millar®, James A. Thomson™*"*, Bing Ren*" & Joseph R. Ecker'
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DMNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome . mCGB=47x107
regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated . r
cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative
analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of
DMNA-protein interaction for several key regulatory factors. Widespread differences were identified in the composition and
patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic
stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to
affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding
sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was
restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes
involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower
transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic
madification in human disease and development.
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MeDIP and non-CG methylation

The CG context
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57 GCTTCTCTGGAGTGEGACAGGTTTGATGACAAAAAATTAGEECAAGAAGACAAAAATCACCTTGEGCTAATGCT 3~
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MeDIP and non-CG methylation

The non-CG context

s 4

57 GCTTCTCTGGAGTGCGACAGGTTTGATGACAAAAAATTAGCGCAAGAAGACAAAAATCACCETTGCGCTAATGCT 3~
37 CGAAGAGACCTCACGCTGTCCAAACTACTGTTTTTTAATCGCGTTCTTCTGTTTTTAGTGGAACGCGATTCCGA 57



MeDIP and non-CG methylation

e Non-CG methylation will result in strand bias during sequencing
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Applications of MeDIP

e We've collaborated on:

— Two “large-scale” projects (N=37, N=60)

— Four smaller-scale projects (N=3, N=6, N=7, N=12)
e Allocate 1 lane of flow cell (lllumina GAllx)

— Generate 40M reads

— Average genome-wide CpG depth = 1.2-1.5x

— Average CpG depth covered by reads = 3.3-4.4x
— No. CpGs covered by reads = 7.1M-10.9M (31.8% - 48.8%)



A cancer methylome

e Aim:
— Define the methylome associated with a malignant phenotype
— MeDIP-Seq to identify tumour specific differential methylation
— Correlation with clinical end points

e Samples:

— Pools of ten cases per sample cohort

e Malignant Peripheral Nerve Sheath Tumors (MPNST) — Cancer
e Benign plexiform neurofibromas — Benign
e Normal Schwann Cell — Healthy

Feber et al (2010) Submitted



Global changes in methylation

e Methylation state of each CpG site binned
— Low (<40%), intermediate (40-60%) & [alf:{aEI510VZ)]

e Studies of other tumour types

— hallmark of a cancer genome = global hypomethylation
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Global repeat methylation

e Methylation over LINE and SINE repeats change slightly
e Interestingly, LINE repeats appear to lose hypomethylated CpGs

e Satellite repeats show the largest change in global methylation
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Effect of methylation at CGls and CGI shores on gene expression
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SOX10 Feber et al (2010) Submitted
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Questions?

|.butcher@ucl.ac.uk

http://www.ucl.ac.uk/cancer/research-groups/medical-genomics/index.htm




